如图,点 是平行四边形 的边 上一点,且 .
(1)作出 的平分线,交 于点 (尺规作图,不写作法,保留作图痕迹);
(2)连接 ,求证:四边形 是菱形.
如图,抛物线 的对称轴是直线 ,与 轴交于 , 两点,与 轴交于点 ,点 的坐标为 ,点 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(1)求抛物线解析式;
(2)若点 在第一象限内,当 时,求四边形 的面积;
(3)在(2)的条件下,若点 为直线 上一点,点 为平面直角坐标系内一点,是否存在这样的点 和点 ,使得以点 , , , 为顶点的四边形是菱形?若存在,直接写出点 的坐标;若不存在,请说明理由.
【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】
在四边形 中,点 为 边上的一点,点 为对角线 上的一点,且 .
(1)若四边形 为正方形.
①如图1,请直接写出 与 的数量关系 ;
②将 绕点 逆时针旋转到图2所示的位置,连接 , ,猜想 与 的数量关系并说明理由;
(2)如图3,若四边形 为矩形, ,其它条件都不变,将 绕点 顺时针旋转 得到△ ,连接 , ,请在图3中画出草图,并直接写出 与 的数量关系.
夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第 天生产空调 台,直接写出 与 之间的函数解析式,并写出自变量 的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第 天的利润为 元,试求 与 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
如图,点 在以 为直径的 上,点 是 的中点,过点 作 垂直于 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.