游客
题文

如图,在平面直角坐标系中,直线y=-x-3与抛物线y=x2+mx+n相交于两个不同的点A、B,其中点A在x轴上.

(1)则A点坐标为   
(2)若点B为该抛物线的顶点,求m、n的值;
(3)在(2)条件下,设该抛物线与x轴的另一个交点为C,请你探索在平面内是否存在点D,使得△DAC与△DCO相似?如果存在,求出点D的坐标;如果不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值 一次函数的最值
登录免费查看答案和解析
相关试题

如图, ΔABC 中, AB = AC ,点 E F 在边 BC 上, BE = CF ,点 D AF 的延长线上, AD = AC

(1)求证: ΔABE ΔACF

(2)若 BAE = 30 ° ,则 ADC =     °

小李读一本名著,星期六读了36页,第二天读了剩余部分的 1 4 ,这两天共读了整本书的 3 8 ,这本名著共有多少页?

如图, 数轴上的点 A B C D 表示的数分别为 3 1 , 1 , 2 ,从 A B C D 四点中任意取两点, 求所取两点之间的距离为 2 的概率 .

如图1,四边形 OABC 是矩形,点 A 的坐标为 ( 3 , 0 ) ,点 C 的坐标为 ( 0 , 6 ) ,点 P 从点 O 出发,沿 OA 以每秒1个单位长度的速度向点 A 运动,同时点 Q 从点 A 出发,沿 AB 以每秒2个单位长度的速度向点 B 运动,当点 P 与点 A 重合时运动停止.设运动时间为 t 秒.

(1)当 t = 2 时,线段 PQ 的中点坐标为  

(2)当 ΔCBQ ΔPAQ 相似时,求 t 的值;

(3)当 t = 1 时,抛物线 y = x 2 + bx + c 经过 P Q 两点,与 y 轴交于点 M ,抛物线的顶点为 K ,如图2所示,问该抛物线上是否存在点 D ,使 MQD = 1 2 MKQ ?若存在,求出所有满足条件的 D 的坐标;若不存在,说明理由.

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号