(本小题满分14分)对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”.(1)求闭函数的“好区间”;(2)若为闭函数的“好区间”,求、的值;(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
)设,函数. (Ⅰ)若,试求函数的导函数的极小值; (Ⅱ)若对任意的,存在,使得当时,都有,求实数的取值范围.
设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点). (Ⅰ)求椭圆的方程; (Ⅱ)设是椭圆上的任意一点,为圆的任意一条直径(,为直径的两个端点),求的最大值.
已知数列,定义其平均数是,. (Ⅰ)若数列的平均数,求; (Ⅱ)若数列是首项为1,公比为2的等比数列,其平均数为, 求证:.
如图,四棱锥的底面为矩形,且,,, (Ⅰ)求证:平面平面; (Ⅱ)求直线与平面所成角的正弦值
如图,在中,点在边上,,,. (Ⅰ)求的值; (Ⅱ)求的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号