(本小题满分13分)已知椭圆过点
,且离心率
.
(1)求椭圆的方程;
(2)是否存在菱形,同时满足下列三个条件:
①点在直线
上;
②点,
,
在椭圆
上;
③直线的斜率等于
.
如果存在,求出点坐标;如果不存在,说明理由.
(本小题满分12分)在最近发生的飞机失联事件中,各国竭尽全力搜寻相关信息,为体现国际共产主义援助精神,中国海监某支队奉命搜寻某海域。若该海监支队共有、
型两种海监船10艘,其中
型船只7艘,
型船只3艘。
(1)现从中任选2艘海监船搜寻某该海域,求恰好有1艘型海监船的概率;
(2)假设每艘型海监船的搜寻能力指数为5,每艘
型海监船的搜寻能力指数为10.现从这10艘海监船中随机的抽出4艘执行搜寻任务,设搜寻能力指数共为
,求
的分布列及期望.
(本小题满分12分)在中,角
所对的边分别为
,已知
.
(1)求的大小;
(2)若,求
的取值范围.
(本小题满分10分)选修4-5:不等式选讲
已知函数f(x)=|3x+2|
(Ⅰ)解不等式,
(Ⅱ)已知m+n=1(m,n>0),若恒成立,求实数a的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线M的参数方程为为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为
(t为参数).
(Ⅰ)求曲线M和N的直角坐标方程,
(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.
(本小题满分10分)选修4--1:几何证明选讲
如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.
(Ⅰ)求证:AC·BC=AD·AE;
(Ⅱ)若AF=2, CF=2,求AE的长.