已知函数(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中
为
的导函数.证明:对任意
.
设函数
(1)讨论函数的极值点;
(2)若对任意的,恒有
,求
的取值范围.
已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函数
,其图象的一条对称轴为
。
(1)求函数的表达式及单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,S△ABC为其面积,若,b=1,
,求a的值。
在△ABC中,角A、B、C所对的边分别为a、b、c,向量 ,
.已知
.
(1)若,求角A的大小;
(2)若,求
的取值范围。
如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中点。
(1)求证:AC⊥平面BDE;
(2)若直线PA与平面PBC所成角为30°,求二面角P-AD-C的正切值;
(3)求证:直线PA与平面PBD所成的角φ为定值,并求sinφ值。