(本小题满分10分)某研究性学习小组对某花卉种子的发芽率与昼夜温差之间的关系进行研究.他们分别记录了3月1日至3月5日的昼夜温差及每天30颗种子的发芽数,并得到如下资料:
日期 |
3月1日 |
3月2日 |
3月3日 |
3月4日 |
3月5日 |
温差x (度) |
10 |
11 |
13 |
12 |
9 |
发芽数y(颗) |
15 |
16 |
17 |
14 |
13 |
参考数据 ,其中
(1)请根据3月1日至3月5日的数据,求出y关于x的线性回归方程.据气象预报3月6日的昼夜温差为11℃,请预测3月6日浸泡的30颗种子的发芽数.(结果保留整数)
(2)从3月1日至3月5日中任选两天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望和方差.
已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤},求函数g(x)=-3x2+3x-4(x∈B)的最大值.
(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小。
(1)证明数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn;
(3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立。
产品A(件) |
产品B(件) |
||
研制成本、搭载费用之和(万元) |
20 |
30 |
计划最大资金额300万元 |
产品重量(千克) |
10 |
5 |
最大搭载重量110千克 |
预计收益(万元) |
80 |
60 |
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?