(本小题满分14分)已知椭圆()的离心率为,点在椭圆上,过椭圆的右焦点的动直线与椭圆相交于、两点.(1)求椭圆的标准方程;(2)若线段中点的横坐标为,求直线的方程;(3)若线段的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.
已知函数。 (1)求的定义域及最小正周期; (2)求的单调递减区间.
已知函数. (Ⅰ)讨论函数的单调性; (Ⅱ)设.如果对任意,,求的取值范围.
在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
已知数列﹛﹜满足:.(Ⅰ)求数列﹛﹜的通项公式;(II)设,求
如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(Ⅰ)三角形的面积;(II)三棱锥的体积
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号