游客
题文

如图,在等腰直角三角形ABC和DEC中,∠BCA=∠DCE=90°,点E在边AB上,ED与AC交于点F,连接AD.

(1)求证:△BCE≌△ACD.
(2)求证:AB⊥AD.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,将矩形 ABCD 沿 AF 折叠,使点 D 落在 BC 边上的点 E 处,过点 E EG / / CD AF 于点 G ,连接 DG

(1)求证:四边形 EFDG 是菱形;

(2)探究线段 EG GF AF 之间的数量关系,并说明理由;

(3)若 AG = 6 EG = 2 5 ,求 BE 的长.

如图,在 Rt Δ ACB 中, C = 90 ° AC = 3 cm BC = 4 cm ,以 BC 为直径作 O AB 于点 D

(1)求线段 AD 的长度;

(2)点 E 是线段 AC 上的一点,试问:当点 E 在什么位置时,直线 ED O 相切?请说明理由.

现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整) :

步数

频数

频率

0 x < 4000

8

a

4000 x < 8000

15

0.3

8000 x < 12000

12

b

12000 x < 16000

c

0.2

16000 x < 20000

3

0.06

20000 x < 24000

d

0.04

请根据以上信息,解答下列问题:

(1)写出 a b c d 的值并补全频数分布直方图;

(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?

(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.

如图,一次函数 y = kx + b ( k b 为常数, k 0 ) 的图象与 x 轴、 y 轴分别交于 A B 两点,且与反比例函数 y = n x ( n 为常数,且 n 0 ) 的图象在第二象限交于点 C CD x 轴,垂足为 D ,若 OB = 2 OA = 3 OD = 12

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为 E ,求 ΔCDE 的面积;

(3)直接写出不等式 kx + b n x 的解集.

如图,在 4 × 4 的方格纸中, ΔABC 的三个顶点都在格点上.

(1)在图1中,画出一个与 ΔABC 成中心对称的格点三角形;

(2)在图2中,画出一个与 ΔABC 成轴对称且与 ΔABC 有公共边的格点三角形;

(3)在图3中,画出 ΔABC 绕着点 C 按顺时针方向旋转 90 ° 后的三角形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号