本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元,设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及
的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知数列满足:
(1)求的值;
(2)求证:数列是等比数列;
(3)令(
),如果对任意
,都有
,求实数
的取值范围.
已知中,点A、B的坐标分别为
,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线
交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
如图,四边形为矩形,
平面
,
,
平面
于点
,且点
在
上.
(1)求证:;
(2)求四棱锥的体积;
(3)设点在线段
上,且
,试在线段
上确定一点
,使得
平面
.
已知函数,
.
(1)求函数的最小正周期;
(2)求函数在区间
上的最大值和最小值.
已知全体实数集,集合
(1)若时,求
;
(2)设,求实数
的取值范围.