与
在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: ;
;
;
(2)说明由
经过怎样的平移得到? .
(3)若点(
,
)是
内部一点,则平移后
内的对应点
的坐标为 ;
(4)求的面积.
已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.
(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“
”或“
”)
(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?
(3)当⊙O过BC中点时(如图3),求CE长.
如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2)在二次函数y=ax2+(a+5)x的图象上.
(1)求该二次函数的关系式;
(2)点C是否在此二次函数的图象上,说明理由;
(3)若点P为直线OC上一个动点,过点P作y轴的平行线交抛物线于点M,问是否存在这样的点P,使得四边形ABMP为平行四边形?若存在,求出此时点P的坐标;若不存在,请说明理由.
已知:E、F是矩形ABCD的对角线AC上的两点,且AE=CF=,连接DE并延长交AB于M,连接BF交CD于N,
(1)求证:四边形BMDN是平行四边形;
(2)当四边形BMDN是菱形时,求的值.
在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)当点C1在线段CA的延长线上时,如图1,求∠CC1A1的度数;
(2)如图2,△ABC绕点B按逆时针方向旋转,连接AA1,CC1,若△ABA1的面积为4,求△CBC1的面积;
(3)点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).
(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;
(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?
(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.