小明在解决问题:已知a=,求
的值.
他是这样分析与解的:∵a==
,
∴a-2=,∴
∴,∴
=2(
=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)化简
(2)若a=,①求
的值;
②直接写出代数式的值= ;
= .
一家用电器开发公司研制出一种新型的电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销售量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
(1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式(不必写出x的取值范围);
(2)求出月销售利润z(万元)(利润=售价-成本价)与销售单价x(元)之间的函数关系式(不必写出x的取值范围).
(3)若某月利润为350万元时,则该月销售量为多少万件,此时销售单价为多少元?
如图所示,在△
中,
,
,将
绕点
沿逆时针方向旋转
得到
.
(1)线段的长是 ,
的度数是 ;
(2)连接,求证:四边形
是平行四边形.
如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向、顶点坐标、对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样
的抛物线,求出其解析式
阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=
.请根据该材料解题:已知x1,x2是方程x2+6x+3=0的两实数根,求
和
的值.
如图,方格纸中的每个都是边长为1的正方形,将△OAB绕点O按顺时针方向旋转90°得到△OA′B′.
(1)在给定的方格纸中画出△OA′B′;
(2)求出OA,AA′的长为.