如图口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5 cm,口袋外有2张卡片,分别写有4 cm和5 cm ,现随机从袋内取出一张卡片,与口袋外两张卡片放在一起,以卡片上的数字分别作为三条线段的长度,回答下列问题:
(1)求这三条线段能构成三角形的概率;
(2)求这三条线段能构成直角三角形的概率.
解不等式 ,并把解集在数轴上表示出来.
已知在矩形中,
的平分线
与
边所在的直线交于点
,点
是线段
上一定点(其中
(1)如图1,若点在
边上(不与
重合),将
绕点
逆时针旋转
后,角的两边
、
分别交射线
于点
、
.
①求证:; ②探究:
、
、
之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点在
的延长线上(不与
重合),过点
作
,交射线
于点
,你认为(1)中
、
、
之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
已知,抛物线经过点
,
(1)求抛物线的解析式;
(2)如图1,抛物线上存在点,使得
是以
为直角边的直角三角形,请直接写出所有符合条件的点
的坐标: .
(3)如图2,直线经过点
,且平行与
轴,若点
为抛物线上任意一点(原点
除外),直线
交
于点
,过点
作
,交抛物线于点
,求证:直线
一定经过点
.
已知正比例函数与反比例函数
的图象在第一象限内交于点
(1)求,
的值;
(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答时
的取值范围.
如图,,
是
的切线,
,
为切点,点
在
上,
,
于
(1)求证:;
(2)若,
的半径为4,求四边形
的周长(精确到0.1,