在修我县人民路的BRT(快速公交)时,需要对部分建筑进行拆迁,县政府成立了拆迁工作组,他们步行去做拆迁产生的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,-0.7,+2.7,-1.3,+0.3,-1.4,+2.6,拆迁点;
(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)在一天的工作中,最远处距离出发点有多远?
(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他的步行速度为2km/h,工作组早上九点出发,做完工作时是下午几点?
如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
已知:如图, AC∥DF,直线AF分别与直线BD、CE 相交于点G、H,∠1=∠2,
求证: ∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH(),
∴∠2=_________(等量代换)
∴// ___________( 同位角相等,两直线平行)
∴∠C=__( 两直线平行,同位角相等 )
又∵AC∥DF()
∴∠D=∠ABG ()
∴∠C=∠D ( )
与
在平面直角坐标系中的位置如图.
⑴分别写出下列各点的坐标:;
;
;
⑵说明由
经过怎样的平移得到 .
⑶若点(
,
)是
内部一点,则平移后
内的对应点
的坐标为;
⑷求的面积.
∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数.
如下图,这是某市部分简图,已知医院的坐标为(一2,一2),请建立平面直角坐标系,分别写出其余各地的坐标.