如图,在平面直角坐标系中,点A为二次函数y=-x2+4x-1图象的顶点,图象与y轴交于点C,过点A并与AC垂直的直线记为BD,点B,D分别为直线与y轴和x轴的交点,点E是二次函数图象上与点C关于对称轴对称的点,将一块三角板的直角顶点放在A点,绕点A旋转,三角板的两直角边分别与线段OD和线段OB相交于点P,Q两点.
(1)点A的坐标为____,点c的坐标为____;
(2)求直线BD的表达式;
(3)在三角板旋转过程中,平面上是否存在点Q,使得以D,E,P,R为顶点的四边形为菱形?若存在,直接写出P,Q,R的坐标;若不存在,请说明理由.
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)设直线l与y轴交于点D,抛物线交y轴于点E,则△DBE的面积是多少?
计算已知a=,b=
,c=-
,d=
,e=
,请你列式表示上述5个数中“无理数的和”与“有理数的积”的差,并计算结果。
如图,对称轴为x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
已知A=, B=
, C=
,
(1)求证:无论为何值,A-B<0成立,并指出A,B的大小关系
(2)请分析A与C的大小关系
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?