游客
题文

(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为     ;② 线段AD,BE之间的数量关系为       
(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;
(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 圆幂定理
登录免费查看答案和解析
相关试题

计算:(1)(2)

直线y=和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4。
(1)当点A与点F重合时,求证:四边形ADBE是平行四边形,并求直线DE的表达式;
(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你求出来。

已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA为边作矩形OBCA,点E,H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处。
(1)求证:四边形OECH是平行四边形;
(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由;
(3)当点B运动到使得点F,G将对角线OC三等分时,求点B的坐标。

翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低。修筑公路的里程y(千米)和所用时间x(天)的关系用下图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=的图象。
(1)求点A的坐标;
(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。

如图,在平行四边形ABCD中,F是对角线的交点,E是边BC的中点,连接EF。
(1)求证:2EF=CD;
(2)当EF与BC满足_____时,四边形ABCD是矩形;
(3)当EF与BC满足_____时,四边形ABCD是菱形,并证明你的结论;
(4)当EF与BC满足_____时,四边形ABCD是正方形。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号