(本小题满分10分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:
(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;
(2)请把条形统计图补充完整;
(3)已知该校有1000人,请根据样本估计全校最喜欢足球的人数是多少?
(本题9分)如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.
(1)求证:∠BQM=600.
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?
③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?
请你对上面三个问题作出判断,在下列横线上填写“是”或“否”:①;②;③.并对②,③的判断,选择一个给出证明.
(本题8分)(1)如图1,Rt△ABC中,AB=AC,∠BAC=90°,直线AE是经过点A的任一直线,BD⊥AE于D,CE⊥AE于E,若BD>CE,试问:BD=DE+CE成立吗?请说明理由.
(2)如图2,等腰△ABC中,AB=AC,若顶点A在直线m上,点D、E也在直线m 上,如果∠BAC=∠ADB=∠AEC=1100,那么(1)中结论还成立吗?如果不成立,BD、DE、CE三条线段之间有怎样的关系?并说明理由.
(本题5分)如图,有一块长为6.5单位长度,宽为2单位长度的长方形纸片,请把它分成6块,再拼成一个正方形,先在图中画出分割线,再画出拼后的图形,并标出相应的数据.
(本题7分)如图所示,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于O点,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.
(1)上述四个条件中,哪两个条件可以判定△ABC是等腰三角形.(用序号数写出所有情况)
(2)选择(1)中的一种情况,证明△ABC是等腰三角形.
(本题6分)如图,四边形ABCD中,AB=3,AD=4
,BC=13
,CD=12
,∠A=90°,求BD的长和四边形ABCD的面积.