(本小题满分12分)如图,在平面直角坐标系xOy中,若点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标;
(3)求点到直线AB的距离.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元 ,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
如图,为
的直径,点
为
上一点,若
,过点
作直线
垂直于射线
,垂足为点
.
(1)试判断与
的位置关系,并说明理由;
(2)若直线与
的延长线相交于点
,
的半径为3,并且
.求
的长.
小明和小刚做纸牌游戏,如图,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各抽取一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.
已知关于x的一元二次方程(a+c)x2+2bx+(a-c=0),其中a、b、c分别为△ABC三边的长.
(1)如果是方程的根,试判断
的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断的形状,并说明理由;
(3)如果是等边三角形,试求这个一元二次方程的根.
在下列网格图中,每个小正方形的边长均为1个单位.在中,
,
.
(1)试在图中做出以
为旋转中心,沿顺时针方向旋转90°后的图形
;
(2)若点B的坐标为,试在图中画出直角坐标系,并写出
、
两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形,并写出
、
两点的坐标.