游客
题文

(本小题满分16分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2
(1)求椭圆C的方程及离心率;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)平面直角坐标系中,椭圆)的离心率为,焦点为,直线经过焦点,并与相交于两点.
(1)求的方程;
(2)在上是否存在两点,满足?若存在,求直线的方程;若不存在,说明理由.

(本小题满分13分)如图,直四棱柱的底面是菱形,侧面是正方形,是棱的延长线上一点,经过点的平面交棱于点

(1)求证:平面平面
(2)求二面角的平面角的余弦值.

(本小题满分13分)某树苗培育基地为了解其基地内榕树树苗的长势情况,随机抽取了100株树苗,分别测出它们的高度(单位:),并将所得数据分组,画出频率分布表如下:

组 距
频 数
频 率
[100,102)
17
0.17
[102,104)
18
0.18
[104,106)
24
0.24
[106,108)


[108,110)
6
0.06
[110,112)
3
0.03
合计
100
1


(1)求上表中的值;
(2)估计该基地榕树树苗平均高度;
(3)基地从上述100株榕树苗中高度在[108,112)范围内的树苗中随机选出5株进行育种研究,其中在[110,112)内的有株,求的分布列和期望.

(本小题满分12分)已知顶点的直角坐标分别是
(1)求的值;
(2)若,证明:三点共线.

(本小题满分13 分)已知函数.
(Ⅰ)若函数在定义域内单调递增,求实数a的取值范围;
(Ⅱ)若,且关于x的方程上恰有两个不等的实根,求实数b的取值范围;
(Ⅲ)设各项为正数的数列满足
求证:.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号