(本小题满分12分)已知数列
是等比数列,首项
,公比
,其前
项和为
,且
,
,
成等差数列.
(1)求数列
的通项公式;
(2)若数列
满足
,
为数列
的前
项和,若
恒成立,求
的最大值.
(本小题满分12分)已知椭圆
的方程是
,椭圆的左顶点为
,离心率
,倾斜角为
的直线
与椭圆交于
、
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设向量
(
),若点
在椭圆
上,求
的取值范围.
(本小题满分12分)已知
两地的距离是120km.假设汽油的价格是6元/升,以
km/h(其中
)速度行驶时,汽车的耗油率为
L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
(本小题满分10分)已知函数
的图象过原点,且
在
,
处取得极值.
(Ⅰ)求函数
的单调区间及极值;
(Ⅱ)若函数
与
的图象有且仅有一个公共点,求实数
的取值范围.
(本小题满分12分)已知直线
过定点
,且与抛物线
交于
、
两点,抛物线在
、
两点处的切线的相交于点
.
(I)求点
的轨迹方程;
(II)求三角形
面积的最小值.
(本小题满分12分)已知函数
.
(I)若函数
在
上是减函数,求实数
的取值范围;
(II)令
,是否存在实数
,使得当
时,函数
的最小值是
,若存在,求出实数
的值,若不存在,说明理由?
(III)当
时,证明:
.