游客
题文

(本小题满分13分)已知椭圆,其中为左、右焦点,O为坐标原点.直线l与椭圆交于两个不同点.当直线l过椭圆C右焦点F2且倾斜角为时,原点O到直线l的距离为.又椭圆上的点到焦点F2的最近距离为

(1)求椭圆C的方程;
(2)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积的最大值;
(3)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图所示,椭圆C:的一个焦点为F(1,0),且过点(2,0)
(1)求椭圆C的方程;
(2)已知A、B为椭圆上的点,且直线AB垂直于轴,又直线=4与轴交于点N,直线AF与BN交
于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

如图示,四棱锥P----ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD = ,E为PD上一点,PE = 2ED.
(1)求证:PA ^平面ABCD;
(2)求二面角D---AC---E的正切值;
(3)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,
说明理由.

设不等式x2+y2£ 4确定的平面区域为U,ïxï+ïyï£ 1确定的平面区域为V.
(1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率;
(2)在区域U内任取3个点,记这3个点在区域V的个数为X,求X的分布列和数学期望EX.

若数列{an}是等比数列,a1>0,公比q¹1,已知lna1和2+ lna5的等差中项为lna2,且a1a2 = e
(1)求{an}的通项公式;(2)设bn= (nÎN*),求数列{bn}的前n项和.

.已知函数,在点处的切线方程

(Ⅰ)求函数的解析式;
(Ⅱ)若对于区间上任意两个自变量的值,都有,求实数
的最小值;
(III)若过点,可作曲线的三条切线,求实数的取值范围

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号