游客
题文

(本小题满分13分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点.

(Ⅰ)求椭圆C的方程;
(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施,某校对高一1班同学按照“国家学生体质健康数据测试”项目按百分制进行了测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.

(Ⅰ)请求出70~80分数段的人数;
(Ⅱ)现根据测试成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、 、第五组)中任意选出两人,形成搭档小组.若选出的两人成绩差大于20,则称这两人为“搭档组”,试求选出的两人为“搭档组”的概率.

(本小题满分12分)
已知函数.
(Ⅰ)求的单调递增区间;
(Ⅱ)当时,求函数的最大值和最小值.

已知函数.
(Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设函数,求函数的最小值;
(Ⅲ)设函数的图象与函数的图象交于P、Q,过线段PQ的中点R作轴的垂线分别交于点M、N,问是否存在点R,使在M处的切线与在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

在直角坐标系,椭圆的左、右焦点分别为.其中也是抛物线的焦点,点M为在第一象限的交点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点D(4,0)的直线交于不同的两点A、B,且A在DB之间,试求BOD面积之比的取值范围.

已知双曲线的一个焦点为,一条渐近线方程为,其中是以4为首项的正数数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若不等式对一切正常整数恒成立,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号