(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施,某校对高一1班同学按照“国家学生体质健康数据测试”项目按百分制进行了测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ)请求出70~80分数段的人数;
(Ⅱ)现根据测试成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、 、第五组)中任意选出两人,形成搭档小组.若选出的两人成绩差大于20,则称这两人为“搭档组”,试求选出的两人为“搭档组”的概率.
在四棱锥中,
,
,点
是线段
上的一点,且
,
.
(1)证明:面面
;
(2)求直线与平面
所成角的正弦值.
如图,海上有两个小岛相距10
,船O将保持观望A岛和B岛所成的视角为
,现从船O上派下一只小艇沿
方向驶至
处进行作业,且
.设
。
(1)用分别表示
和
,并求出
的取值范围;
(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线
的距离为
,求BD的最大值.
集合,
,若命题
,命题
,且
是
必要不充分条件,求实数
的取值范围。
(本小题满分14分)已知函数在点
的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求证:
在
上恒成立;
(Ⅲ)已知,求证:
.
(本小题满分13分)已知且
,函数
,
,记
.
(Ⅰ)求函数的定义域
及其零点;
(Ⅱ)若关于的方程
在区间
内有解,求实数
的取值范围.