设函数(
).
(1)当时,求过点
且与曲线
相切的切线方程;
(2)求函数的单调递增区间;
(3)若函数有两个极值点
,
,且
,记
表示不大于
的最大整数,试比较
与
的大小.
(本小题满分12分)
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为为坐标原点,
记
(1)求随机变量的最大值,并求事件“
取最大值”的概率;
(2)求的分布
列及数学期望。
(本小题满分10分)
已知函数
且函数
的最小正周期为
;
(1)求函数的解析式;
(2)在中,角
所对的边分别为
若
且
求
的值。
已知圆C1的方程为,椭圆C2的方程为
,C2的离心率为
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线A
B的
方程和椭圆C2的方程.
设函数(
),其中
.
(1)当时,讨论函数
的单调性;
(2)若函数仅在
处有极值,求
的取值范围;
(3)若对于任意的,不等式
在
上恒成立,求
的取值范围.
我国西南地区正遭受着百年不遇的旱灾.据气象预报,未来48小时受灾最严重的甲地有望迎来一次弱降雨过程.某军区命令M部队立即前往甲地准备实施人工增雨作业,已知“人工增雨”高炮车Ⅰ号载有3枚“增雨炮弹”和1枚“增雨火箭”,通过炮击“积雨云”实施增雨,第一次击中积雨云只能使云层中的水分子凝聚,第二次击中同一积雨云才能成功增雨.如果需要第4次射击才使用“增雨火箭”,当增雨成功或者增雨弹用完才停止射击.每次射击相互独立,且用“增雨炮弹
”击中积雨云的概率是
,用“增雨火箭”击中积雨云的概率是
.
(Ⅰ)求不使用“增雨火箭”就能成功增雨的概率;
(Ⅱ)求要使用“增雨火箭”才能成功增雨的概率;
(Ⅲ)求射击次数不小于3的概率.