(本小题满分7分)《选修4-4:坐标系与参数方程》
在极坐标系中,圆的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)若圆上的动点
的直角坐标为
,求
的最大值,并写出
取得最大值时点P的直角坐标.
已知函数
(1)设方程在(0,
)内有两个零点
,求
的值;
(2)若把函数的图像向左移动
个单位,再向下平移2个单位,使所得函数的图象关于
轴对称,求
的最小值。
鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为
(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
在中,设内角
的对边分别为
向量
,向量
,若
(1)求角的大小;
(2)若,且
,求
的面积.
风景秀美的凤凰湖畔有四棵高大的银杏树,记做A、B、P、Q,欲测量P、Q两棵树和A、P两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得A、B两点间的距离为米,如图,同时也能测量出
,
,
,
,则P、Q两棵树和A、P两棵树之间的距离各为多少?
理科已知函数,当
时,函数
取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数
在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;(Ⅲ)已知正数
满足
求证:当
,
时,对任意大于
,且互不相等的实数
,都有