【原创】(本小题满分12分)如图,在三棱锥中,
底面ABC,
,AP=AC, 点
,
分别在棱
上,且BC//平面ADE.
(Ⅰ)求证:DE⊥平面;
(Ⅱ)若PC⊥AD,且三棱锥的体积为8,求多面体ABCED的体积.
如图,一环形花坛分为A、B、C、D四块,要求在每块里种一种花,且相邻的2块种不同的花.
(1)若在三种花种选择两种花种植,有多少种不同的种法?
(2)若有四种花可供选择,种多少种花不限,有多少种不同的种法?
已知集合A=,B=
,
(1)当时,求
(2)若:
,
:
,且
是
的必要不充分条件,求实数
的取值范围.
设.
(1)若以
作为矩形的边长,记矩形的面积为
,求
的概率;
(2)若求这两数之差不大于2的概率.
设函数
(1)若在点x=0处的切线方程为y=x,求m,n的值。
(2)在(1)条件下,设求a的取值范围.
已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上取两个点,将其坐标记录于下表中:
![]() |
3 |
![]() |
4 |
![]() |
![]() |
![]() |
0 |
![]() |
![]() |
(1)求,
的标准方程;
(2)请问是否存在直线满足条件:①过
的焦点
;②与
交于不同两点
,
,且满足
?若存在,求出直线
的方程;若不存在,说明理由.