已知点,
.
(Ⅰ)若, 求
的值;
(Ⅱ)设为坐标原点, 点C在第一象限, 求函数
的单调递增区间与值域.
求函数的导数。
求函数的导数。
设分别为椭圆
的左、右两个焦点,若椭圆C上的点A(1,
)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.
已知函数f(x)=alnx+bx,且f(1)= -1,f′(1)=0,
(1)求f(x);
(2)求f(x)的最大值;
(3)x>0,y>0,证明:lnx+lny≤.
数列{an}满足a1+2a2+22a3+…+2n-1an=4n.
(1)求通项an;
(2)求数列{an}的前n项和 Sn.