(本小题满分13分)已知函数,
为自然对数的底数.
(1)过点的切线斜率为
,求实数
的值;
(2)当时,求证:
;
(3)在区间上
恒成立,求实数
的取值范围.
如图,已知椭圆的离心率为
,且经过点
平行于
的直线
在
轴上的截距为
,
与椭圆有A、B两个
不同的交点
(Ⅰ) 求椭圆的方程;
(Ⅱ)求的取值范围;
(III)求证:直线、
与
轴始终围成一个等腰三角形.
若数列的前
项和为
:;
(Ⅰ) 求数列的通项公式
;
(Ⅱ) 设数列的前
项和为
,是否存在实数
,使得
对一切正整数都成立?若存在,求出
的最小值,若不存在,请说明理由.
如图(1),是等腰直角三角形,
,
、
分别为
、
的中点,将
沿
折起,使
在平面
上的射影
恰为
的中点,得到图(2).
(Ⅰ)求证:;(Ⅱ)求三棱锥
的体积.
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位: 名
男 |
女 |
总计 |
|
看营养说明 |
50 |
30 |
80 |
不看营养说明 |
10 |
20 |
30 |
总计 |
60 |
50 |
110 |
(I)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为的样本,问样本中看与不看营养说明的女生各有多少名?
(Ⅱ)从(I)中的5名女生样本中随机选取两名作深度访谈, 求选到看与不看营养说明的女生各一名的概率;
(III)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
在中,内角
对边的边长分别是
,已知
,
.
(Ⅰ)若,求
;
(Ⅱ)若,求
的面积.