(本小题满分12分)某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),
结果用二维等高条形图表示,如图.
(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?
![]() |
0.10 |
0.05 |
0.01 |
![]() |
2.706 |
3.841 |
6.635 |
(参考数据与公式:
;
|
女 |
男 |
合计 |
关心 |
|
|
500 |
不关心 |
|
|
500 |
合计 |
|
524 |
1000 |
(2)已知校团委有青年志愿者100名,他们已参加活动的情况记录如下:
参加活动次数 |
1 |
2 |
3 |
人数 |
10 |
50 |
40 |
(i)从志愿者中任选两名学生,求他们参加活动次数恰好相等的概率;
(ii)从志愿者中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量
的分布列及数学期望
.
已知命题方程
在[-1,1]上有解;命题
只有一个实数
满足不等式
,若命题“p∨q”是假命题,求实数
的取值范围.
已知命题,且
,命题
,且
.
(Ⅰ)若,求实数
的值;
(Ⅱ)若是
的充分条件,求实数
的取值范围.
已知函数,
为正常数.
(Ⅰ)若,且
,求函数
的单调增区间;
(Ⅱ)若,且对任意
都有
,求
的的取值范围.
如图,在半径为、圆心角为
的扇形的弧上任取一点
,作扇形的内接矩形
,使点
在
上,点
在
上,设矩形
的面积为
,
(Ⅰ)按下列要求求出函数关系式:
①设,将
表示成
的函数关系式;
②设,将
表示成
的函数关系式;
(Ⅱ)请你选用(1)中的一个函数关系式,求出的最大值.
在中,
、
、
分别是三内角
、
、
的对边,已知
.
(Ⅰ)求角的大小;
(Ⅱ)若,判断
的形状.