(本小题满分12分)为了进一步激发同学们的学习热情,某班级建立了理科、文科两个学习兴趣小组,两组的人数如下表所示.现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取名同学进行测试.
(Ⅰ)求从理科组抽取的同学中至少有名女同学的概率;
(Ⅱ)记为抽取的
名同学中男同学的人数,求随机变量
的分布列和数学期望.
(本小题满分12分)如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
(本小题满分12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的以为圆心的转盘一次,并获得相应金额的返券,假定指针等可能地指向任一位置(不指向各区域的边界). 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量
的分布列和数学期望.
(本小题共12分)如图,四棱锥的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.
(本小题共12分)已知函数的 部 分 图 象如 图 所示.
(I)求 函 数的 解 析 式;
(II)在△中,角
的 对 边 分 别 是
,若
的 取 值 范 围.
已知直线,圆
.
(Ⅰ)证明:对任意,直线
与圆
恒有两个公共点.
(Ⅱ)过圆心作
于点
,当
变化时,求点
的轨迹
的方程.
(Ⅲ)直线与点
的轨迹
交于点
,与圆
交于点
,是否存在
的值,使得
?若存在,试求出
的值;若不存在,请说明理由.