(本小题满分12分)某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表1所示
表1
|
参加社团活动 |
不参加社团活动 |
合计 |
学习积极性高 |
17 |
8 |
25 |
学习积极性一般 |
5 |
20 |
25 |
合计 |
22 |
28 |
50 |
(1)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(2)运用独立检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
![]() |
0.05 |
0.01 |
0.001 |
![]() |
3.841 |
6.635 |
10.828 |
(本小题满分14分)
设数列的前
项和为
,且对任意的
,都有
,
.
(1)求,
的值;(2)求数列
的通项公式
;(3)证明:
.
(本小题满分14分)
已知点,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.(1)求动点
的轨迹
的方程;(2)已知圆
过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
(本小题满分14分)已知,函数
,
(其中
为自然对数的底数).(1)求函数
在区间
上的最小值;(2)是否存在实数
,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)
如图6,正方形所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
、
的点,
,圆
的直径为9.
(1)求证:平面平面
;
(2)求二面角的平面角的正切值.
(本小题满分12分)某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.