游客
题文

(本小题满分12分)
设函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对任意恒成立,求实数的最小值;
(Ⅲ)设是函数图象上任意不同两点,线段AB中点为C,直线AB的斜率为k.证明:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)现有4名男生、2名女生站成一排照相.
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?

.(本小题满分14分)用数学归纳法证明:1+3+5+…+(2n-1)=n2n∈N+).

(本小题满分14分)
函数定义在区间[a, b]上,设“”表示函数在集合D上的最小值,“”表示函数在集合D上的最大值.现设

若存在最小正整数k,使得对任意的成立,则称函数
为区间上的“第k类压缩函数”.

(Ⅰ) 若函数,求的最大值,写出的解析式;
(Ⅱ) 若,函数上的“第3类压缩函数”,求m的取值范围.

(本小题满分15分)
已知点,过点作抛物线的切线,切点在第二象限,如图.(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

(本小题满分15分)
如图,在四棱锥中,底面为正方形,平面,已知为线段上的动点.

(Ⅰ)若的中点,求证:平面
(Ⅱ)若二面角与二面角的大小相等,求长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号