(本小题满分12分)
设函数
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)若对任意恒成立,求实数
的最小值;
(Ⅲ)设是函数
图象上任意不同两点,线段AB中点为C
,直线AB的斜率为k.证明:
.
(本小题满分14分)现有4名男生、2名女生站成一排照相.
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
.(本小题满分14分)用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+).
(本小题满分14分)
函数定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
(Ⅰ) 若函数,求
的最大值,写出
的解析式;
(Ⅱ) 若,函数
是
上的“第3类压缩函数”,求m的取值范围.
(本小题满分15分)
已知点,过点
作抛物线
的切线
,切点
在第二象限,如图.(Ⅰ)求切点
的纵坐标;
(Ⅱ)若离心率为的椭圆
恰好经过切点
,设切线
交椭圆的另一点为
,记切线
的斜率分别为
,若
,求椭圆方程.
(本小题满分15分)
如图,在四棱锥中,底面
为正方形,
平面
,已知
,
为线段
上的动点.
(Ⅰ)若为
的中点,求证:
平面
;
(Ⅱ)若二面角与二面角
的大小相等,求
长.