已知数列
,且
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,求适合方程
的正整数
的值.
已知函数
,其中
.
 (1)讨论函数f(x)的单调性;(2)当
时,求函数f(x)的最大值.
(本小题满分12分)
  已知数列
,设
,数列
。(1)求证:
是等差数列; (2)求数列
的前n项和Sn;
  (3)若
一切正整数n恒成立,求实数m的取值范围。
(本小题满分12分)
 某商店经销一种奥运纪念品,每件产品成本为30元,且每卖出一件产品,需向税务部门上交
元(
为常数,
)的税收,设每件产品的日售价为
元(
),根据市场调查,日销售量与
(
为自然对数的底数)成反比,已知每件产品的日售价为40元,日销售量为10件。w.w.w求商店的日利润
元与每件产品的日售价
元的函数关系式;当每件产品的日售价为多少元时该商店的日利润
最大,说明理由。
如图,已知四棱锥
的底面是正方形,
⊥底面
,且
,点
、
分别在侧棱
、
上,且

  (Ⅰ)求证:
⊥平面
;
  (Ⅱ)若
,求平面
与平面
的所成锐二面角的大小
(本小题满分12分)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
  (Ⅰ)确定角C的大小:(Ⅱ)若c=
,且△ABC的面积为
,求a+b的值。