某中学有甲乙两个文科班进行数学考试,按照大于或等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:
|
优秀 |
非优秀 |
合计 |
甲 |
20 |
5 |
25 |
乙 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(Ⅰ)用分层抽样的方法在优秀的学生中抽6人,其中甲班抽多少人?
(Ⅱ)在上述抽取的6人中选2人,求恰有一名同学在乙班的概率;
(Ⅲ)计算出统计量,若按95%可靠性要求能否认为“成绩与班级有关”.
下面的临界值表代参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式其中
)
如图,某兴趣小组测得菱形养殖区的固定投食点
到两条平行河岸线
的距离分别为4m、8m,河岸线
与该养殖区的最近点
的距离为1m,
与该养殖区的最近点
的距离为2m.
(1)如图甲,养殖区在投食点的右侧,若该小组测得
,请据此算出养殖区的面积;
(2)如图乙,养殖区在投食点的两侧,试在该小组未测得
的大小的情况下,估算出养殖区的最小面积.
在△ABC中,角A,B,C的对边分别是a,b,c,且.
(1)求的值;
(2)试判断△ABC的形状,并说明理由
设定义在上的函数
的最小正周期为
.
(1)若,
,求
的最大值;
(2)若,
,求
的值
平面直角坐标系中,已知向量
且
.
(1)求与
之间的关系式;
(2)若,求四边形
的面积
已知函数
(1)求函数的极大值;(2)
(3)对于函数定义域上的任意实数
,若存在常数
,使得
都成立,则称直线
为函数
的分界线。设
,试探究函数
是否存在“分界线”?若存在,请给予证明,并求出
的值;若不存在,请说明理由