新建的荆州中学拟模仿图甲建造一座体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线是以点
为圆心的圆的一部分,其中
单位:米
;曲线
是抛物线
的一部分;
,且
恰好等于圆
的半径.假定拟建体育馆的高
米.
(Ⅰ)若要求米,
米,求
与
的值;
(Ⅱ)若,将
的长表示为点
的纵坐标
的函数
,并求
的最大值.
并求的最大值.(参考公式:若
,则
,其中
为常数)
已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.
(1)求证:(a-b)⊥c;
(2)若|ka+b+c|>1 (k∈R),求k的取值范围.
设a=(cos,sin
),b=(cos
,sin
),且a与b具有关系|ka+b|=
|a-kb|(k>0).
(1)用k表示a·b;
(2)求a·b的最小值,并求此时a与b的夹角.
向量a=(cos23°,cos67°),向量b=(cos68°,cos22°).
(1)求a·b;
(2)若向量b与向量m共线,u=a+m,求u的模的最小值.
已知a=(cos,sin
),b=(cos
,sin
)(0<
<
<
).
(1)求证:a+b与a-b互相垂直;
(2)若ka+b与a-kb的模相等,求-
.(其中k为非零实数)
A(2,3),B(5,4),C(7,10),=
+
.当
为何值时,
(1)点P在第一、三象限的角平分线上;
(2)点P到两坐标轴的距离相等?