已知函数,
在点
处的切线方程为
.
(Ⅰ)求的解析式;
(Ⅱ)求的单调区间;
(Ⅲ)若在区间内,恒有
成立,求
的取值范围.
国家教育部、体育总局和共青团中央曾共同号召,在全国各级各类学校要广泛、深入地开展全国亿万大中小学生阳光体育运动.为此某网站于2010年1月18日至24日,在全国范围内进行了持续一周的在线调查,随机抽取其中200名大中小学生的调查情况,就每天的睡眠时间分组整理如下表所示:
序号(![]() |
每天睡眠时间 (小时) |
组中值(![]() |
频数 |
频率 ( ![]() |
1 |
[4,5) |
4.5 |
8 |
0.04 |
2 |
[5,6) |
5.5 |
52 |
0.26 |
3 |
[6,7) |
6.5 |
60 |
0.30 |
4 |
[7,8) |
7.5 |
56 |
0.28 |
5 |
[8,9) |
8.5 |
20 |
0.10 |
6 |
[9,10) |
9.5 |
4 |
0.02 |
![]() |
(Ⅰ)估计每天睡眠时间小于8小时的学生所占的百分比约是多少;
(Ⅱ)该网站利用上面的算法流程图,对样本数据作进一步统计
分析,求输出的S的值,并说明S的统计意义.
已知甲、乙、丙三种食物的维生素A、B含量及成本如下表:
甲 |
乙 |
丙 |
|
维生素A(单位/kg) |
60 |
70 |
40 |
维生素B(单位/kg) |
80 |
40 |
50 |
成本(元/kg) |
11 |
9 |
4 |
现分别用甲、乙、丙三种食物配成10kg混合食物,并使混合食物内至少含有560单位维生素A和630单位维生素B.
(Ⅰ)若混合食物中恰含580单位维生素A和660单位维生素B,求混合食物的成本为多少元?
(Ⅱ)分别用甲、乙、丙三种食物各多少kg,才能使混合食物的成本最低?最低成本为多少元?
已知定义在R上的函数(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值
.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明:对任意∈[-1,1],不等式
成立;
(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.
已知动点P到直线的距离比它到点F
的距离大
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l:对称,求实数
的取值范围.
如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.
(Ⅰ)证明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.