为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别 |
候车时间 |
人数 |
一 |
[0,5) |
2 |
二 |
[5,10) |
6 |
三 |
[10,15) |
4 |
四 |
[15,20) |
2 |
五 |
[20,25) |
1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
(本题满分12分)
已知集合,
,
.
(1)求,
;
(2)若,求
的取值范围.
(本小题满分14分)
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,
求实数的取值范围;
(3)当时,求证:
.
(本小题满分13分)
已知函数.
(1) 若函数的定义域和值域均为
,求实数
的值;
(2) 若在区间
上是减函数,且对任意的
,
总有,求实数
的取值范围;
(3) 若在
上有零点,求实数
的取值范围.
(本小题满分12分)
已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若
天购买一次,需要支付
天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[
(2)设该厂天购买一次配料,求该厂在这
天中用于配料的总费用
(元)关于
的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
(本小题满分12分)
已知函数
(1)求函数的单调递减区间;
(2)设,
的最小值是
,最大值是
,求实数
的值.