观察以下各等式:,
分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性利用综合法作出证明.
(本小题满分14分)已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与
轴交于点O, A,
与y轴交于点O, B,其中O为原点.
(Ⅰ)当t=2时,求圆C的方程;
(Ⅱ)求证:△OAB的面积为定值;
(Ⅲ)设直线y = –2x+4与圆C交于点M, N,若,求圆C的方程.
本小题满分12分)已知实数,
.
(Ⅰ)求点(a,b)在第一象限的概率;
(Ⅱ)求直线与圆
有公共点的概率.
(本小题满分12分)如图,已知四棱锥中,底面
是直角梯形,
,
,
,
,
平面
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)若是
的中点,求三棱锥
的体积.
(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(Ⅰ)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(Ⅱ)设甲篮球运动员10场比赛得分平均值,将10场比赛得分
依次输入如图所示的程序框图进行运算,问输出的
大小为多少?并说明
的统计学意义;
(Ⅲ)如果从甲、乙两位运动员的10场得分中,各随机抽取一场不小于30分的得分,求甲的得分大于乙的得分的概率.
本小题满分12分)设直线与直线
交于P点.
(Ⅰ)当直线过P点,且与直线
平行时,求直线
的方程.
(Ⅱ)当直线过P点,且原点O到直线
的距离为1时,求直线
的方程.