(年福建泉州12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.
(1)已知:DE∥AC,DF∥BC.
①判断四边形DECF一定是什么形状?
②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;
(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点 处测得河北岸的树 恰好在 的正北方向.测量方案与数据如下表:
课题 |
测量河流宽度 |
||
测量工具 |
测量角度的仪器,皮尺等 |
||
测量小组 |
第一小组 |
第二小组 |
第三小组 |
测量方案示意图 |
|
|
|
说明 |
点 , 在点 的正东方向 |
点 , 在点 的正东方向 |
点 在点 的正东方向,点 在点 的正西方向. |
测量数据 |
, , . |
, , . |
, , . |
(1)哪个小组的数据无法计算出河宽?
(2)请选择其中一个方案及其数据求出河宽(精确到 .(参考数据: , , ,
小吴家准备购买一台电视机,小吴将收集到的某地区 、 、 三种品牌电视机销售情况的有关数据统计如下:
根据上述三个统计图,请答案:
(1) 年三种品牌电视机销售总量最多的是 品牌,月平均销售量最稳定的是 品牌.
(2)2019年其他品牌的电视机年销售总量是多少万台?
(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.
经过实验获得两个变量 , 的一组对应值如下表.
|
1 |
2 |
3 |
4 |
5 |
6 |
|
6 |
2.9 |
2 |
1.5 |
1.2 |
1 |
(1)请画出相应函数的图象,并求出函数表达式.
(2)点 , , , 在此函数图象上.若 ,则 , 有怎样的大小关系?请说明理由.
已知:如图,在 中, , 与 相切于点 .求证: .小明同学的证明过程如下框:
证明:连结 , , , 又 , , . |
小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.