(年湖北鄂州12分)如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.
(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.
(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究
是否为定值?请说明理由.
(3)将抛物线C1作适当平移,得到抛物线C2:,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.
如图,AC,BD是⊙O的两条直径.
(1)判断四边形ABCD的形状,并说明理由.
(2)若⊙O的直径为8,∠AOB=120°,求四边形ABCD的周长和面积.
已知某二次函数当时,函数有最大值-1,且函数图像与y轴交于(0,-4),
求该二次函数的解析式.
一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相
同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为.
(1)试求袋中绿球的个数;
(2)从箱子中任意摸出一个球是黄球的概率是多少?
(3)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图
或列表格的方法,求两次都摸到红球的概率.
已知:如图是破铁轮的轮廓,请用直尺和圆规作出它的圆心。
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.
(1)求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.