(2014年湖北宜昌12分)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△ ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0, ;
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.
如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式.
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
抛物线上部分点的横坐标x,纵坐标y的对应值如下表:
x |
… |
-2 |
-1 |
0 |
1 |
2 |
… |
y |
… |
0 |
-4 |
-4 |
0 |
8 |
… |
(1)根据上表填空:
①抛物线与x轴的交点坐标是和;
②抛物线经过点(-3, );
③在对称轴右侧,y随x增大而;
(2)试确定抛物线的解析式.
已知二次函数
(1)求证:无论m为任何实数,该二次函数的图像与x轴都有两个交点;
(2)当该二次函数的图像经过点(3,6)时,求此二次函数的解析式.
已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式.
有理数a,b,c在数轴上的位置如图所示,化简:。