(2014年吉林省10分)如图①,直线l:y=mx+n(m>0,n<0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.
(1)若l:y=﹣2x+2,则P表示的函数解析式为 ;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为 .
(2)求P的对称轴(用含m,n的代数式表示);
(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.
如图,在矩形ABCD中,AB=4,BC=4.点M是AC上动点(与点A不重合),设AM=x,过点M作AC的垂线,交直线AB于点N.
(2)以D、M、N三点为顶点的△DMN的面积能否达到矩形ABCD面积的?若能,请求出此时x的值,若不能,请说明理由.
小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连
接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子,?
如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保
持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时
又以0.8 m/s的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇,
甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8 m/s的速度往下跑,而乙到达底端后则
在原地等候甲.图2中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底
端的路程y(m)与所用时间x(s)之间的部分函数关系,结合图象解答下列问题:
(1)点B的坐标是 ▲;
(2)求AB所在直线的函数关系式;
(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?
已知线段AB,分别按下列要求画图(或作图),并保留痕迹.
(1)如图1,线段AB与A′B′关于某条直线对称,点A的对称点是A′,只用三角尺画出
点B的对称点B′;
(2)如图2,平移线段AB,使点A移到点A′的位置,用直尺和圆规作出点B的对应点
B′;
(3)如图3,线段AB绕点O顺时针方向旋转,其中OB=OA,点A旋转到点A′的位
置,只用圆规画出点B的对应点B′,并写出画法;