游客
题文

在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:

摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率
0.58
0.64
0.58
0.59
0.605
0.601

 
(1)请估计:当n很大时,摸到白球的频率将会接近      ;(精确到0.1)
(2)试估算口袋中白种颜色的球有多少只?
(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?

科目 数学   题型 解答题   难度 中等
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

分解因式:
(1)6m2n﹣15n2m+30m2n2
(2)x(x﹣y)2﹣y(x﹣y)

小明在做作业时,不慎将墨水滴在一个三项式上,将前后两项污染得看不清楚了,但中间项是12xy,为了便于填上后面的空,请你帮他把前后两项补充完整,使它成为完全平方式,你有几种方法?(至少写出三种不同的方法)
三项式:■+12xy+■= (  ) 2
(1)  ;(2)  ;(3)  
我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:
(1)x2+5x+6=x2+(3+2)x+3×2=(x+2)(x+3);
(2)x2﹣5x﹣6=x2+(﹣6+1)x+(﹣6)×1=(x﹣6)(x+1).
请你仿照上述方法,把下列多项式分解因式:
(1)x2﹣8x+7;
(2)x2+7x﹣18.

(1)8a3b2﹣12ab3c+6a3b2c
(2)8a(x﹣a)+4b(a﹣x)﹣6c(x﹣a)
(3)﹣x5y3+x3y5(4)4(a﹣b)2﹣16(a+b)2
(5)﹣8ax2+16axy﹣8ay2(6)m2+2n﹣mn﹣2m
(7)a2﹣4a+4﹣c2
(8)(a2+1)2﹣4a2
(9)(x+3y)2+(2x+6y)(3y﹣4x)+(4x﹣3y)2(10)a4﹣6a2﹣27.

对下列代数式分解因式
(1)a2(x﹣y)﹣4b2(x﹣y)
(2)a3+6a2+9a
(3) x4﹣1
(4) x2﹣7x+10

分解因式:
(1)x2y2﹣y2
(2)x2﹣4ax﹣5a2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号