(年山西省13分)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.
(1)求抛物线W的解析式及顶点D的坐标;
(2)将抛物线W和OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和
O′A′B′C′,在向下平移的过程中,设
O′A′B′C′与
OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;
(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为
配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调
查,征求市民的意见,并将调查结果整理后制成了如下统计图:
|
(本题满分10分,第(1)小题4分,第(2)小题6分)如图,△ABC中,,点E是AB的中点,过点E作DE⊥AB交BC于点D,联结AD,若AC=8,
.
(1)求:的长;
(2)求:的长.
先化简再求值:,选一个使原代数式有意义的数带入求值.
解不等式组:,并把它的解集在数轴上表示出来。
(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题
满分4分)
已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,
(1)求y关于x的函数关系式及自变量x的取值范围;
(2)当△NPF的面积为32时,求x的值;
(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。