游客
题文

(2014年辽宁阜新12分)如图,抛物线y=-x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.

(1)求抛物线的函数表达式及其顶点C的坐标;
(2)如图①,点P(m,0)是线段AO上的一个动点,其中-3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;
(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.      

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

计算:

已知二次函数
(1) 证明:当m为整数时,抛物线与x轴交点的横坐标均为整数;
(2) 以抛物线的顶点A为等腰Rt△的直角顶点,作该抛物线的内接等腰Rt△ABC(B、C两点在抛物线上),求Rt△ABC的面积(图中给出的是m取某一值时的示意图);
(3) 若抛物线与直线y=7交点的横坐标均为整数,求整数m的值.

如图,已知梯形ABCD的下底边长AB=8cm,上底边长DC=1cm,O为AB的中点,梯形的高DO=4cm. 动点P自A点出发,在AB上匀速运行,动点Q自点B出发,沿B→C→D→A匀速运行,速度均为每秒1个单位,当其中一个动点到达终点时,另一动点也同时停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).
(1)求S随t变化的函数关系式及t的取值范围;
(2)当t为何值时S的值最大?说明理由.

如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)连结BE,设DC=a,求BE的长.

某商店采购了某品牌的T恤、衬衫、裤子共60件,每款服装按进价至少要购进10件,且恰好用完所带的进货款3700元.设购进T恤x件,衬衫y件.三款服装的进价和预售价如下表:

(1)求出y与x之间的函数关系式;
(2)假设所购进服装全部售出,该商店在采购和销售的过程中需支出各种费用共300元.
①求出预估利润W(元)与T恤x(件)的函数关系式;(注:预估利润W=预售总额-进货款-各种费用)
②求出预估利润的最大值,并写出此时对应购进各款服装多少件.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号