游客
题文

(2014年湖北襄阳12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为        ;抛物线的解析式为       
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知:如图,直线y=﹣x+4与x轴相交于点A,与直线y=x交于点P.

(1)求点P的坐标.
(2)动点F从原点O出发,以每秒1个单位的速度在线段OA上向点A作匀速运动,连接PF,设运动时间为t秒,△PFA的面积为S,求出S关于t的函数关系式.
(3)若点M是y轴上任意一点,点N是坐标平面内任意一点,若以O、M、N、P为顶点的四边形是平行四边形,请直接写出点N的坐标.

提出问题:如图①,在正方形ABCD中,点P,F分别在边BC、AB上,若AP⊥DF于点H,则AP=DF.类比探究:
(1)如图②,在正方形ABCD中,点P、F.、G分别在边BC、AB、AD上,若GP⊥DF于点H,探究线段GP与DF的数量关系,并说明理由;
(2)如图③,在正方形ABCD中,点P、F、G分别在边BC、AB、AD上,GP⊥DF于点H,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF,若四边形DFEP为菱形,探究DG和PC的数量关系,并说明理由.

某学校开展“科技创新大赛”活动,设计遥控车沿直线轨道做匀速直线运动
的模型.现在甲、乙两车同时分别从不同起点A,B出发,沿同一轨道到达C处.设t后甲、乙两遥控车与B处的距离分别为d1,d2,且d1,d2与t的函数关系如图,若甲的速度是乙的速度的1.5倍,试根据图象解决下列问题:

(1)填空:乙的速度是米/分;
(2)写出d1与t的函数关系式;
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?

某公司招聘人才,共有50人进入复试.对应聘者分别进行阅读能力、思维能力和表达能力三项侧试,甲、乙两人的成绩如表(单位:分):


阅读
思维
表达

93
86
73

95
81
79


(1)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(2)公司按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图,请计算此次参加复试人员的平均分.

如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.

(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号