已知:如图,直线y=﹣x+4
与x轴相交于点A,与直线y=
x交于点P.
(1)求点P的坐标.
(2)动点F从原点O出发,以每秒1个单位的速度在线段OA上向点A作匀速运动,连接PF,设运动时间为t秒,△PFA的面积为S,求出S关于t的函数关系式.
(3)若点M是y轴上任意一点,点N是坐标平面内任意一点,若以O、M、N、P为顶点的四边形是平行四边形,请直接写出点N的坐标.
如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.
(1)求证:;
(2)判断AF与BD是否平行,并说明理由.
如图,把△EFP按图所示的方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=
,∠BAD=60°,且AB
.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)
如图,已知一条直线过点,且与抛物线
交于A,B两点,其中点A的横坐标是
.
(1)求这条直线的函数关系式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;
(3) 过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N,当点M的横坐标为何值时,
的长度最大?最大值是多少?
已知如图,在平面直角坐标系中,直线
与
轴、
轴分别交于A,B两点,P是直线AB上一动点,⊙
的半径为1.
(1)判断原点O与⊙的位置关系,并说明理由;
(2)当⊙过点B时,求⊙
被
轴所截得的劣弧的长;
(3)当⊙与
轴相切时,求出切点的坐标.