(年福建莆田12分)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.
(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
如图,直线 与 轴交于点 ,与 轴交于点 .将线段 先向右平移1个单位长度、再向上平移 个单位长度,得到对应线段 ,反比例函数 的图象恰好经过 、 两点,连接 、 .
(1)求 和 的值;
(2)求反比例函数的表达式及四边形 的面积;
(3)点 在 轴正半轴上,点 是反比例函数 的图象上的一个点,若 是以 为直角边的等腰直角三角形时,求所有满足条件的点 的坐标.
某校开设了“ ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.
校本课程 |
频数 |
频率 |
|
36 |
0.45 |
|
|
0.25 |
|
16 |
|
|
8 |
|
合计 |
|
1 |
请您根据图表中提供的信息回答下列问题:
(1)统计表中的 , ;
(2)“ ”对应扇形的圆心角为 度;
(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;
(4)小明和小亮参加校本课程学习,若每人从“ ”、“ ”、“ ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.
如图 是 的直径, 与 相切于点 , 与 相交于点 , 为 上的一点,分别连接 、 , .
(1)求 的度数;
(2)若 ,求 的长度.
本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:
地点 |
票价 |
历史博物馆 |
10元 人 |
民俗展览馆 |
20元 人 |
(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?
(2)若学生都去参观历史博物馆,则能节省票款多少元?
如图,在 中,连接 , 是 延长线上的点, 是 延长线上的点,且 ,连接 交 于点 .求证: .