(年湖南湘西22分)如图,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B(2,)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,
)在y轴上,过点(0,
)作直线l与x轴平行.
(1)求抛物线的解析式和直线BC的解析式.
(2)设点D(x,y)是线段BC上的一个动点(点D不与B,C重合),过点D作x轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?
(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS的形状,并说明理由;
(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.
如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结
并延长交
的延长线于点
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
已知二次函数.
(1)求出该函数图象的顶点坐标,图象与x轴的交点坐标.
(2)当x在什么范围内时,y随x的增大而增大?
(3)当x在什么范围内时,?
已知:正比例函数的图象于反比例函数
的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.
如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数解析式;
(2)求过A、B、C三点的抛物线的函数关系式;
(3)请你利用所求抛物线的图像回答:当x取何值时,抛物线中的部分图像落在x轴的上方?