(年辽宁盘锦14分)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时.
①求证:DG=2PC;
②求证:四边形PEFD是菱形;
(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.
(本题满分10分,第(1)小题7分,第(2)小题3分)
如图6,矩形纸片ABCD的边长AB=4,AD=2.翻折矩形纸片,使点A与点C重合,折痕分别交AB、CD于点E、F,
(1)在图6中,用尺规作折痕EF所在的直线(保留作图痕迹,不写作法),并求线段EF的长;
(2)求∠EFC的正弦值.
(本题满分10分)解方程:
.
解不等式组:把它的解集在数轴上表示出
来,并求它的整数解.
(本题满分14分,第(1)题4分,第(2)题4分,第(2)题6分)
在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.
(1)如图,当点F在线段DE上时,设BE,DF
,试建立
关于
的函数关系式,
并写出自变量的取值范围;
(2)当以CD直径的⊙O与⊙E与相切时,求的值;
(3)联接AF、BF,当△ABF是以AF为腰的等腰三角形时,求的值。
(本题满分12分,第(1)、(2)题各6分)
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.
(1)求直线AD和抛物线的解析式;
(2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.