(2014年山东青岛10分)数学问题:计算(其中m,n都是正整数,且m≥2,n≥1).
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是
.
根据第n次分割图可得等式:.
探究二:计算.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,最后空白部分的面积是
.
根据第n次分割图可得等式:,
两边同除以2,得.
探究三:计算.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题:计算.
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式: ,
所以,= .
拓广应用:计算.
已知一纸箱中放有大小均匀的只白球和
只黄球,从箱中随机地取出一只白球的概率是
.
写出
与
的函数关系式;
当
时,再往箱中放进20只白球,求随机地取出一只黄球的概率
.
如图,在直角坐标平面内,为原点,点
的坐标为
,点
在第一象限内,
,
.
求:点
的坐标。
求:
的值.
如图所示,将矩形沿
折叠,使点
恰好落在
上
处,以
为边作正方形
,延长
至
,使
,再以
、
为边作矩形
.
试比较
、
的大小,并说明理由.
令
,请问
是否为定值?若是,请求出
的值;若不是,请说明理由.
在(2)的条件下,若
为
上一点且
,抛物线
经过
、
两点,请求出此抛物线的解析式.
在(3)的条件下,若抛物线
与线段
交于点
,试问在直线
上是否存在点
,使得以
、
、
为顶点的三角形与
相似?若存在,请求直线
与
轴的交点
的坐标;若不存在,请说明理由.
已知某种水果的批发单价与批发量的函数关系如图(1)所示.请说明图中①、②两段函数图象的实际意义;
写出批发该种水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
如图,在中,
是
上一点,
交
于点
,
,
,
与
有什么位置关系?证明你的结论.